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An elliptic grid generation method is presented to generate
boundary conforming grids in domains in 2D and 3D physical space
and on minimal surfaces and parametrized surfaces in 3D physical
space. The elliptic grid generation method is based on the use
of a composite mapping. This composite mapping consists of a
nonlinear transfinite algebraic transformation and an elliptic trans-
formation. The elliptic transformation is based on the Laplace equa-
tions for domains, of on the Laplace-Beltrami equations for surfaces.
The algebraic transformation maps the computational space one-
to-one onto a parameter space. The elliptic transformation maps
the parameter space one-1o-one onta the domains or surfaces. The
composition of these two mappings is a differentiable one-to-one
mapping from computational space onto the domains or surfaces
and has a nonvanishing Jacobian. This composite mapping defines
the grid point distribution in the interior of the domains or surfaces.
For domains and minimal surfaces, the composite mapping obeys a
nanlinear elliptic Poisson system with control functions completely
defined by the algebraic transformation. The solution of the Poisson
systems is obtained by Picard iteration and black-box multigrid
solvers. For parametrized curved surfaces, it is not necessary to
define and solve a nonlinear elliptic Poisson system. Instead a linear
elliptic system and an inversion problem is solved to generate the
grid in the interior of the surface. 2 1995 Academic Press, e,
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INTRODUCTION

A graphical interactive multi-block grid generator, called
ENGRID, has been developed at NLR to construct multi-block
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structured grids for the computation of flows based on the
Euler and Navier—Stokes equations about complete aircraft
conligurations, including propulsion aircrait components 11,
13-15]. Advanced algebraic grid generation techniques are
applied to construct the grids [13, 14]. Extensive use of EN-
GRID at NLR and Fokker has demonstrated that the applied
techniques are fast and sufficiently robust to create grids for
the simulation of flows based on the Euler equations. However,
the applied techniques show too often grid folding when Na-
vier—Stokes grids are generated in the interior of curved sur-
faces and blocks with complex shapes. Therefore, more robust
grid generation techniques with a minimum of grid tuning
parameters were needed to construct such grids efficiently. For
this purpose a new elliptic grid generation method has been
developed with a maximum of robustness and a minimum of
grid tuning parameters. The method has been incorporated into
the ENGRID code and has been applied successfully to generate
boundary conforming Navier—Stokes grids in blocks and block-
faces with complex shapes. This new elliptic grid generation
method is the topic of this paper.

Since the pioneering work of Thompson on elliptic grid
generation it is known that systems of eiliptic second-order
partial dilferential equations produce the best possible grids in
the sense of smoothness and grid point distribution. The systems
of clliptic second-order partial differential equations are Pois-
son-type systerns with control functions to be specified. The
secret of each “‘good™ elliptic grid is the method to compute
the control functions [10].

Originalty Thompson and Warsi introduced the Poisson sys-
teims by considering a curvilinear coordinate system which
satisfies a system of Laplace equations and which is transformed
to another coordinate system {1, 2]. Then this new coordinate
system satisfies a system of Poisson equations with control
functions completely specified by the transformation between
the two coordinate systems. However, Thompson did not use
this approach for grid generation. Instead he proposed to use
the Poisson system with control functions specified directly
rather than through a transformation {1]. Since then the general
approach is to compute the control functions at the boundary
and to interpolate them from the boundaries into the field {1,
8-10].
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The main disadvantage of such an approach is that it is then
not possible to prove that the system of Poisson equations
defines a one-to-one map so that the computed grids may con-
tain grid folding.

In this paper we will show that also Thompson’s and Warsi’s
original idea to define the control functions by a transformation
can be used for grid generation. An important advantage of
this approach is that the corresponding Poisson system defines
a one-to-one map if the transformation is one-to-one. It will
be shown that it is not difficult to construct appropriate one-
to-one transformations. For this purpose, nonlinear transfinite
algebraic transformations will be used.

We will apply this approach to generate boundary conform-
ing grids in domains in 2D and 3D physical space and on
minimal surfaces and parametrized surfaces in 3D physical
space.

Thus, the underlying concept of the proposed grid generation
method is to use a composite mapping. The idea is to introduce
a parameter (coordinate) system in the given domains and sur-
faces which only depends on their shape and not on the pre-
scribed boundary grid point distribution. The parameters are
defined as normalized arclength at the boundaries and each
parameter obeys the Laplace equation in the interior of a domain
or the Laplace-Beltrami equation in the interior of a surface.

For 2D domains and surfaces, the parameter system can be
interpreted as a differentiable one-to-one mapping from a unit
square, called the parameter space, onto the 2D domain or
surface. This mapping is called the elliptic transformation. The
parameter space is a unit cube for a domain in 3D physical
space.

A nonlinear transfinite algebraic transformation is con-
structed to control grid point distributions. This transformation
maps the computational space onto the parameter space. The
computational space is also considered as a unit square for
2D domains and surfaces and as a unit cube for 3D
domains. Grids in computational space are always uniform.
The algebraic transformation depends on the prescribed bound-
ary grd point distribution. The algebraic transformation is con-
structed in such a way that the mapping is also differentiable
and one-to-one.

Thus, the algebraic transformation maps the computational
space onto the parameter space and an eiliptic transformation
maps the parameter space onto the domains or surfaces in
physical space. The composition of these two mappings is a
differentiable one-to-one mapping from computational space
onto the domains or surfaces in physical space and has a nonvan-
ishing Jacobian. The composite mapping defines the grid poiat
distribution in the interior of the domains or surfaces.

Although the composite mapping is one-to-one, this does
not imply that generated grids are always grid folding free,
because the discrete equations may not share this robust prop-
erty [7]. But it is guaranteed that grid folding will always
disappear when the grid is refined. Furthermore, it is our experi-
ence that grids produced by the composite mapping are hardly

ever folded even when Navier—Stokes type of grids are gener-
ated in domains or surfaces with complex shapes.

The elliptic transformation is independent of the prescribed
boundary grid point distribution and may thus be considered
as a property of the domain or surface itself. The algebraic
transformation depends on the prescribed grid point distribu-
tion. As we will see, the interior grid point distribution in
parameter space, generated by the algebraic transformation, is
always a good reflection of the grid point distribution at the
boundary of the parameter space. Therefore, the interior grid
point distribution in the domains and surfaces is also a good
reflection of the prescribed boundary grid point distribution.
This is not the case for grids solely based on the system of
Laplace equations. Then the inherent smoothness of the Laplace
operator makes the grids evenly spaced in the interior (for
example, a boundary layer will be blown up and completely
disappear). Therefore, grid generators solely based on the sys-
tem of Laplace equations are unusable in practice.

Thompson [1] and Warsi [2] have shown that the composite
mapping obeys an elliptic Poisson system with control functions
completely defined by the algebraic transformation. The num-
ber of control functions is six for 2I) domains and surfaces and
18 for 3D domains. In our case, the control functions are speci-
fied by the algebraic transformation only and it is, therefore,
not needed to compute the control functions at the boundary
and to interpolate them into the interior of the domains or
surfaces, as is the case of all well-known elliptic grid generation
systems based on Poisson systems [1, 8—10].

Also new and more useful expressions for the control func-
tions are derived in a short and elegant way which only depend
on the algebraic transformation itself and not also on the inverse
of this transformation (which occurs in the expressions used
by Warsi and Thompson).

The computed grids are in general not orthogonal at the
boundary. Sometimes, grid orthogonality is very much desired.
Ii is shown that the algebraic transformation can be redefined
to obtain a gri¢ which is orthogonal at the boundary.

The nonlinear elliptic Poisson equations are solved by
Picard iteration. The linearized equations are solved by excel-
lent black-box multigrid solvers developed by P. M. de Zeeuw
at CW.L [16-18].

The paper is organized as follows: In Section 2, the Laplace
equations, the parameter space and the algebraic transformation
are presented for domains in two-dimensional physical space.
The resulting Poisson equations are derived, together with the
appropriate expressions of the control functions. The discretiza-
tion and solution of the nonlinear elliptic equations are dis-
cussed and, also, the orthogonalization of the grid at boundaries.
Examples of grids in 2D domains are given.

Surface grid generation on minimal surfaces is discussed in
Section 3. It is shown that grid generation on a minimal surface
is in fact the same problem as grid generation in a domain in
2D physical space. Illustrations of grids on minimal surfaces
are given.
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Surface grid generation on surfaces with a prescribed shape
is treated in Section 4, It is assumed that such surfaces are
parametrized and that the parametrization is a differentiable
one-to-one mapping from a unit square onto the surface. The
generated surface grids are independent of the parametrization.
The solution method to generate the grids in the interior of
parametrized surfaces is different from that used for minimal
surfaces. It is much easier to solve directly the two linear elliptic
partial differential equations defined by the Laplace-Beltrami
equations, instead of interchanging the dependent and indepen-
dent variables, which leads to a nonlinear elliptic system of
partial differential eqoations. An inversion problemn must then
be solved afterwards. Such a simple solution method is only
possible for parametrized surfaces. This is due to the fact that
an initial grid folding free surface grid on a parametrized surface
can be easily generated because the given parametrization is
one-to-one. Illustrations of grids on parametrized surfaces
are given,

Grid generation in 3D domains is treated in Section 5. The
elliptic and algebraic transformation is defined. The resulting
Poisson equations are derived, together with the appropriate
expressions of the control functions. The discretization and
solution of the nonlinear eiliptic equations is discussed and
examples of grids in 3D domains are given. Finally, concluding
remarks are made in Section 6.

2. 2D GRID GENERATION

2.1. Derivation of the 2D Grid Generation Equations

Consider a simply connected bounded domain % in two-
dimensional space with Cartesian coordinates x = (x, y)". Sup-
pose that 9 is bounded by four edges, E,, E;, E;, E,. Let (E,,
E;} and (E;, E,) be the two pairs of opposite edges as shown
in Fig. 1.

Define the computational space ‘€ as the unit square in a
two-dimensional space with Cartesian coordinates £ = (&, n)".
Assume that a mapping x: 46 — 0% is prescribed which maps

the boundary of € one-to-one on the boundary of 9. This
mapping defines the boundary grid point distribution. As-
sume that

* {=0atedge £, and £ =1 at edge F,,
+ 9= at 0 at edge E; and n = | at edge E,.

We wish to construct a mapping X : 6 +— & which obeys the
boundary conditions and which is a differentiable one-to-one
mapping. Furthermore, we require that the interior grid point
distribution is a good reflection of the prescribed boundary grid
point distribution,

A natural mapping x:%€ — D exists which obeys these
requirements. This mapping will be the composition of an alge-
braic transformation and an elliptic transformation based on
the Laplace equations. The algebraic transformation is a differ-
entiable one-to-one mapping from computational space ‘€ onto
a parameter space %, The parameter space is also a unit square,
We will see below that the algebraic transformation will only
depend on the prescribed boundary grid point distribution at
the four edges of domain %. The elliptic transformation is a
differentiable one-to-one mapping from parameter space 2 onto
domain %, The elliptic transformation will only depend on the
shape of domain % and is thus independent of the prescribed
boundary grid point distribution. The elliptic transformation
may thus be considered as a property of domain 9. The compo-
sition of these two mappings defines the interior grid point
distribution and is a differentiable one-to-one mapping from
computational domain € onto domain 9.

Introduce the parameter space % as the unit square in a
two-dimensional space with Cartesian coordinates s = (s, )7,
Require that the parameters s and ¢ obey:

e s={atedge F, and s = 1 at edge E,,
* 5 is the normalized arclength along edges E; and E,.
e t=0atedge E,and r = ] at edge Fy,

* 1 is the normalized arclength along edges E; and E,.

n t
! O] ! ®
o ® @
—
0 @ 0 @
0 1 & 0

Computational space C

FI1G. 1.

Parameter space P

1 8 X

Domain D

Transformation from computational (£, 1) space to a domain % in Cartesian (x, y) space.
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Thus §:0% +> ¢% is defined by these requirements. In the
interior of % we require that s and r are harmonic functions of
x and y, thus obey the Laplace equations:

#s | #%

As='a—x—2 W=Sn+sw=0, (N
a8

At=—+—=t,+1,=0. 2
axt By’ ” )

The two Laplace equations As = 0 and Az = 0, together with
the above specified boundary conditions, define the mapping
§:% +— P. Note that this mapping only depends on the shape
of domain % and is independent of the prescribed boundary
grid point distribution. By interchanging the dependent and
independent variables, a nonlinear elliptic partial differential
equation can be derived for x: % +— @. Thus we have to solve
a nonlinear elliptic boundary value problem in % in order to
define this mapping. This mapping defines our elliptic transfor-
matio. It is well known that this mapping is differentiable and
one-to-one [4].

The algebraic transformation must be a differentiable one-
to-one mapping from computational space 6 onto the parameter
space P. Because x: 36 — §% is prescribed and x: 6% — oD
is defined as described above, it follows that s: € — 9% is
also defined.

From the preceding requirements it follows that

s, =0, s, m=1,

3
5(£,0) = sp,(8), s(& 1) = s5(8),

where the functions sz, s, are monotonically increasing, and

100 =0, (& =1,

@)
10, =tg(m), 11, m}=1(m),
where the functions f;, ¢, also are monotonically increasing.
Thus the four functions 75 (), te,(7), 5£,(£). 55,(£) are defined
by the boundary grid point distribution.
The mapping s : €+ 9 is now defined by two algebraic equa-
tions:

s = sg (€1 — 1} + 55, (601, (5)

t= 1z ()1 = $) + 15, ()s. (6)

Equation (5) implies that a coordinate line £ = const is mapped
to the parameter space P as a straight line: 5 is a linear function
of t; Eq. (6} implies that a grid line i = const is also mapped
to @ as a straight line: ¢ is a linear function of s. For given
values of £ and 7, the corresponding s and ¢ values are found
as the intersection point of the two straight lines. For this reason,

the system defined by Egs. (5), (6) is called the ‘“‘algebraic
straight line transformation’ because of the use of straight lines
in parameter space %. It can be easily verified that this systemn
defines a differentiable one-to-one mapping because of the
positiveness of the Jacobian: sg, — 5,6, > 0.

The system defined by Eqgs. (3), (6} can be interpreted as a
transfinite interpolation with nonlinear blending functions and
resembles the transfinite interpolation method of Soni [6].

The algebraic transformation s : ‘€ — % and the elliptic trans-
formation x: % — % are differentiable and one-to-one. Thus
the composite mapping x:% +— 2 defined as x(£) = x(s(&))
is also differentiable and one-to-one. Furthermore, due to the
properties of the basic mappings, we may indeed expect that
the interior grid point distribution will be a good reflection of
the boundary grid point distribution. In the remainder of this
section, we will derive the set of nonlinear elliptic partial differ-
ential equations which the composite mapping x = x(s(£)) has
to fulfill.

It has already been noted by Warsi and Thompson that the
composite mapping will obey an elliptic system of Poisson
equations. However, the system of Poisson equations as given
in [1, 2] is not so useful because it contains control functions
which depend also on the derivatives of the inverse mapping
£: %P — €. It will be shown below that it is not difficult to obtain
expressions for these control functions which only depend on
the derivatives of the mapping s:% — P itself.

First, introduce the two covariant base vectors

X 94X

Jh="—==X;,, H=—=X,,
1 af £ 2 an W

(7

and define the covariant metric tensor components as the inner
product of the covariant base vectors
a; = (a, a), i={1,2},j=1{1,2}. 8

Then the contravariant base vectors a' and a? are defined ac-
cording to the rules
(aiy aj) = 6_;, l = {ls 2}’1‘ = {1$ 2}7 (9)

with &} the Kronecker symbol. Define the contravariant metric
tensor components

=@, a), i=A{1,2}j=112} (10)
so that
ay  ap\ faVt a? 1 0
(au azz) (a” a”) - (0 1)’ (11)
and

a' = a"a; + qa,, 2’ = a%a, + Pa,. )]
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Introduce the determinant J* of the covariant metric tensor:
= ayay — ah.

Now consider an arbitrary function ¢ = &(£ 1). Then ¢ is
also defined in domain % and the Laplacian of ¢ is expressed as

A‘f’=¢xx+¢y}r:

3{(!{;”@ + Ja ) + (Ja e + Ja% )}, (13)

which may be found in every textbook on tensor analysis and
differential geometry (for example, see [20, p. 227]). Take as
special cases respectively ¢ = £and ¢ = n. Then Eq. (13) yields

Mg =T+ (a, An = H{Ud+ (Ja ) (14)

Thus the Laplacian of ¢ can also be expressed as

Aqb = a11¢§§ + 2a12¢§n + a”qb,,,? + A§¢§ + A?? (}5,;,. (15)

Substitution of respectively ¢¢ = 5 and ¢ = r in this equa-
tion yields

As = a"\sg + 2a"%s, + a¥s,, + Afs; + Ans,,  (16)

Ar=a"ty + 2a%t,, + aPr, + AL+ A, (A7)

Using these equations and the requirement that s and ¢ are
harmonic in domain &, thus, As = 0 and Ar = 0, we find the
expressions for the Laplacian of ¢ and n,

Ag 22
= a“P” + ZauPu + a Pzz,

18
An (18)
where
s 5
Py =T ( ‘fg), Pp=-T" ( "’), Py= T ( )
Te ten L
(19)
and the matrix T is defined as
s: 5
T= ( f ”). 0
IE iy

The six coefficients of the vectors P, = (P}, P3V, P, =
(P, P1)T, and Py, = (P, P%)T are so-called control functions.
Thus the six control functions are completely defined and easily
computed for a given algebraic transformation s = s{ £). Differ-
ent and less useful expressions of these control functions can
also be found in [1, 2].

Finally, substitution of ¢ = x in Eq. (15) yields
Ax = a""Xg + 2a"%,, + aPx,, + Aéx, + Anx,. (21

Substitution of Eq, (18) into this equation and using the fact
that Ax = 0 we arrive at the Poisson grid generation system,

allX§€ + 20'2X§,} + anx,m + ((ZHP%; + ZQDP{Q. + anPiz)Xg (22)
+ (a“P%] + zauP%g -+ alngl)x,, =10.

Using Egs. (8) and (11) we find the following well-known
expressions for the contravariant metric tensor components:

J2all =an = (x'rp xn)s

(23)

2 _ - ,
Jal? = —dap = _(X,E, X-,J),

12a22 =danp = (X{, xg).

Thus the Poisson grid generation system defined by Eq. {22)
can be simplified by multiplication with /2. Then we obtain

QHX§§+ zalzxfﬂ + azzxm + (a”P}l + ZCEHP}Q + aﬁlpéz)xf

+ (a“P%l + 2&‘21)%2 + anP%2)xn =0, @4

and
05” = (xns x'q)s a12 = _F(xb Xn)a 0’-22 = (X§, Xf)- (25)

These equations, together with the expressions for the control
functions P§ given by Eq. (19), form our 2D grid generation
system. Grids are computed by solving this quasi-linear system
of elliptic partial differential equations, The discretization of
this Poisson system is described in the next section.

2.2. Discretization and Solution Method

Consider a uniform rectangular grid of (N + ) X (M + 1)
points in computational space € defined as
Li=&=UN, n,=n=jM i=0.N,j=0..M (26)
Assume that x;; is prescribed on the boundary of this grid and
consider the computation of x;; in the interior of the computa-
tional grid based on the solution of the Poisson system defined
by Eq. (24).

First we will compute the arclength normalized variabies s;;
and #;; based on the algebraic transformation defined by Eqgs.
(5) and (6). The arclength normalized variables s,; and ¢;; are
computed at the boundary of the computational grid as follows.
Compute the distance between succeeding points at the
boundary:

do; = %o, — Xoll Ay =y~ 3wl j=1..M, @27)
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(_ii,{) = "Xi.o_ Xifl,ﬂns EE.M = nxi,M - Xf—].MH, i=1.N (28
Define the length of edges E|, E,, E;, E, by
M _ M _ N _
Lp = ] dojr Le, = 2] dy;. Ly = 2} do,
i= = i=
LA (29)
LE} = 2 d{Ms
and the normalized distances as
doy=dojflg, dy;=dyiLg, j=1..M, (30)
d"'o - ai'()/LE:i, dj‘M = Ei,M/LEd, l = l s N (31)

The arclength normalized variables s;; and #;; at the boundary
are then defined by

s, =0, sy=1, j=0.M, (32)
o=0, fy=1, i=0.N, {33)
and
Sw=stdo, Sm=Somtdy. =1.N, (34)
foj = tojr Yoy tyj =iy tdy;, j=1..M. (35)

The arclength normalized variables (s;; 1) in the interior of
the grid are now computed according to the algebraic straight
ling transformation defined by Egs. (5) and (6) and are thus
found by solving simultaneously the two linear algebraic equa-
tions

Sy = sl = 1) + sty

(36)

fy = Ll — 550 + 1835, (37)
foreachpair (4, ) E(1 .. N - 1,1 . M- 1)

At each grid point (i, j), the six control functions
Py, P}, Py, PY, Py, P} defined by Eq. (19), are now easily
computed using centra] differences for the discretization of s,
Segs Sams Sgs Sy ANd lgg, Ly, Bygs lg, Iy

Next, consider the iterative solution process of the nonlinear
elliptic Poisson grid generation system defined by Eq. (24),
Rewrite this systern as

Pxg + 20%, + RXp + Sx, + Tx, = 0,  (38)
with
P= (X,], xn)’ Q = _(xf! xn)s R= (xfs x.f)v
§=PP},,+20QP,+RP), 39

T=PP+20Ph + RPL,.

The solution of this system of nonlinear elliptic equations is
obtained by Picard iteration,

Polxl, + 200 x4, + REIXE, + SYxE+H THIxE =0, (40)

with
PHL=(xTLXED, Q= —(xEL X,
Rk—l = (Xk_l,xk_]),
P @1)
SEl= peipl 2 20%PL + RF'PL,,
Tl = pipl + 20F1PH + RV P,
Thus a current approximate solution
'=&ELI=0LN =0 M}, (42)

is improved by the following steps:

* Compute the coefficients P*!, Q%! R*1 §41 T ! hy
applying central differences for the discretization of x4™! and
x, '. Note that the six control functions remain unchanged
during the iterative procedure.

* Discretize x%, x%,, x}, X}, by using central differences. The
discretization of the mixed derivative x; is done in a way as
described in [19].

* After the discretization of x§, x%,, x%,. x4, x¥, we arrive at
a linear system of equations for the unknowns xf;, i = 0 ...
N, j = 0 .. M with Dirichlet boundary conditicns. At each
interior grid point (i, j} we have a nine-point stencil. This linear
system is solved by the excellent black-box multigrid solver
MGDSV developed at CW.L by P. M. de Zeeuw [16]. The
multigrid solver MGD9V is called twice to compute the two
components x{; and y¥; of x§;. The solution of the linear system
provides a better approximate solution x*.

The complete process 1s repeated until a sufficiently accurate
solution has been obtained. The initial start solution x° is ob-
tained by algebraic grid generation. The final grid is indepen-
dent of the initial grid. Moreover, the guality of the initial grid
is unimportant and severe grid folding of the initial grid is
allowed. In general, about 10 Picard iterations are enough to
obtain a sufficiently accurate solution of the nonlinear elliptic
Poisson equations.

2.3. Orthogonality at Boundaries

Grids obtained by the nonlinear elliptic Poisson grid genera-
tion system defined by Eq. (24) are grid folding free and have
an excellent interior grid point spacing distribution. However,
the computed grids are in general not orthogonal at the boundary
and sometimes grids should be orthogonal at the boundary.
Especially for Navier—Stokes computations, the orthogonality
of the grid in a boundary layer is often desired.
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Grid orthogonality at boundaries can be achieved as follows.
Suppose that a grid has been computed based on the solution
of the Poisson grid generation system with control functions
specified by the algebraic straight-line transformation. Suppose
that it is desired that the grid is orthogonal at all four edges of
domain 9.

Redefine the elliptic transformation x: % — % by imposing
the following new set of boundary conditicns for the harmonic
functions s and ¢;

* s=0atedge E, and s = | at edge E;,

* d5/dn = O along edges E; and E,, where n is the outward
normal direction,

*t=0atedge E;and : = 1 at edge E,.

* 3t/dn = 0 along edges E, and £, where n is the outward
normal direction.

These new boundary conditions define a new mapping x:
%+ 9. Thus s is no longer the normalized arclength along
edges E; and E,, and ¢ is no longer the normalized arclength
along edges E, and E,, It is not difficult to understand, by
applying Gauss’s integral formula for harmonic functions, that
the Neumann boundary condition d s/dn = 0 imply that s cannot
have a local extremum at edge £, and edge F, of domain %.
Similarly, ¢ cannot have a local extremum at edge E, and edge
E,. Hence, s is still monotone along edges E; and E;, and ¢ s
still monotone along edges E, and E,.

The Neumann boundary condition ds/dn = 0 along edges
E; and E, also imply that a parameter line s = const is a curve
in domain % which is orthogonal at those edges. Similarly, a
parameter line ¢ = const is a curve in 9 which is orthogonal
at edge E, and edge E;.

It is possible to compute the new harmonic functions s and
t directly as functions of the computational coordinates (£, n)
because of the existence of an initial mapping x: € +— &. We
only have to solve two Laplace equations As = O and At =
0, together with the above specified boundary conditions, on
an existing grid in domain &. This is an elementary classical
problem and the solution can be obtained rather easily. Some
remarks about the discretization of the Laplace equation with
Neumann boundary conditions are given at the end of this
section.

Write the solution as s = 5(& n) and ¢ = 1(& n). For our
purposes, the only important information is the solution on the
boundary. Redefine the edge functions by

553(5) = §(§’ 0)’ SE4(§) = §(§’ 1)3

e () = 10, ), 1a,(m) = 101, m).

@3

These new edge functions are still monotonically increasing.
The algebraic transformation s:% + @ is now redefined
according to two algebraic equations,

s = 5g (HH(1) + s (OH (1), (44)

t= tp, (MHu(s) + te (M)H(s), (45)

where H, and H, are cubic Hermite interpolation functions
defined as

0=s=1.

(46}

Hy(s) = (1 +25)1 — 5)%, Hy(5) = (3 — 25)s7,

Note that Hy(0)} = 1, Hy(0) = 0, Hy(1) = 0, H{(1) = ( and
HQ)y=0,H()=0,H((l) =1, H(1) = 0. It follows from
Eq. (44) that a coordinate line £ = const is mapped to parameter
space J as a cubic curve which is orthogonal at both edge E;
and edge E, in &. Such a curve in parameter space % will thus
be mapped by the new elliptic transformation x: % — 9 as a
curve which is orthogonal at both edge E; and edge E, in 9.
Similar observations can be made for coordinate lines n =
const, Thus the grid will be orthogonal at all four edges in
domain .

The composite mapping x:‘€ — 9 still obeys the Poisson
grid generation system defined by Eq. (24). Thus the same
system of elliptic equations can be solved to generate an orthog-
onal grid at the boundary. The only difference is that now s:
% > @ is defined by Eqs. (44) and (45) instead of Egs. (5)
and (6).

Grid orthogonality at boundaries is obtained in three steps.
First compute an initial grid based on the Poisson grid genera-
tion system with control functions specified according to the
algebraic¢ straight line transformation detined by Egs. (5) and
(6). Next solve the two Laplace equations As = 0 and Ar =
0, together with the above specified boundary conditions, on
this initial grid to obtain new edge functions z (1), #(n),
5g,(£), 5¢,(£). Then recompute the grid based on the Poisson
system but with control functions specified according to the
algebraic transformation defined by Eqgs. (44) and (45).

Grid orthogonality at boundaries may introduce grid folding.
Fortunately, grid folding will not be easily introduced. From
Eqg. (44) it follows that two different coordinate lines £ = §,
=&, &§ # &, are mapped to parameter space P as two
disjunct cubic curves which are orthogonal at both edge E, and
edge E, in %, This is due 1o the fact that sz (£) and sz (£) are
monotonijcally increasing functions. The same holds for differ-
ent coordinate lines i = n,, 7 = 1, 1 ¥ 1. For given values
of £ and 7, the corresponding s and ¢ values are found as the
intersection point of two cubic curves. However, two such cubic
curves may have more than one intersection point. In that case
grid folding will occur. In practice we hardly ever encounter
grid folding due to orthogonalization.

We have described a method to obtain an orthogonal grid
at all four edges of domain 9. In praciice, orthogonality of the
grid is often only desired at one edge or two or three edges.
Suppose, for example, that it is only desired to have an orthogo-
nal grid at edge E;. In that case, £z (), 7,(n), and 5(£) are
defined as normalized arclength. Only sz (£) is computed by
demanding that ds/dn = 0 along edge E; in 9. Thus only one
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Laplace equation As = 0 has to be solved to obtain sz (£) (with
Dirichlet boundary conditions at edges E,, E;, E,; and a Neu-
mann boundary condition at edge E,). Furthermore, it is suffi-
cient that the algebraic transformation s:€ — @ is such that
a coordinate line 7 = const is mapped to & as a straight line
and that a coordinate line £ = const is mapped to % as a
patabolic curve which is only orthogonal at edge E; in @,

Finally we will show how the Laplace equation As = 0,
iogether with the above specified boundary conditions, is dis-
cretized and solved on an existing grid in @. The discretization
and solution of At = 0 is obtained in the same way.

Consider a uniform rectangular grid of (N + 1) X (M + 1)
points in computational space as defined by Eq. (26). Thus x;;
is defined for all grid points (i, j). From Eq. (13) it follows
that s obeys in computational space the linear second-order
elliptic equation

(Ja"sg + Ja“s,); + (Jas, + Ja¥s,), = 0, (47)
which can be written in vector notation as
div(A grad 5s) = 0, (48)
where the matrix A = A(§ n) is defined as
all alZ 1 ( an Aan)
A=J == . 49
(a}z 022) S\—ap ay “

At an interior grid point (i, j), the coefficients of matrix A
can be directly computed by using central differences for x,
and x,,. Thus Eq. (48) i5 a linear diffusion problem with given
variable coefficients.

A finite-volume cell-centered approach is used to obtain the
discretized equations. Integration of Eq. (48) on a control vol-
ume  C 4 gives

jﬂ div(A grad ) dédn

= jm(A grad s, n) do

_ (50)
= J(m(grad s, An)do

=0,

where n is the outward unit normal vector and do is a line
element. Atan interior grid point (i, j) in €, the discrete equation
is derived in a straightforward way by applying Eq. (50) for a
rectangular control volume {};; with sizes 1/N and 1/M around
(&;» m;) = (i/N, j/M). The result is a nine-point stencil.

Half control volumes are used for boundary grid points, It
is not difficult to show that the Neumann boundary condition
ds/dn = 0 at a boundary in & transforms to (grad s, An} =
0 at the corresponding boundary in . Thus the flux is zero.
This observation makes the discretization at boundary grid
points also straightforwaid,

After discretization, we obtain a linear system of equatiois
for the unknowns {s,; | i = 0 ... N; j = 0 ... M} with Dirichlet
and Neumann boundary conditions. At each interior grid point
(i, j) we have a nine-point stencil. This linear system is solved
by the black-box multigrid solver MGD9V [16].

2.4, Hlustrations

Examples of grids in 2D domains are shown in Figs. 7-17
(see Section 5.3). All grids are grid-folding free and the interior
grid point distribution is a good reflection of the prescribed
boundary grid point distribution. An jnitial grid (obtained with
algebraic grid generation) is required as the starting solution
for the nonlinear elliptic Poisson system. The final elliptic grid
is independent of the initial grid. Moreover, the quality of the
initial grid is unimportant and severe grid folding of the initial
grid is allowed.

Figure 7 shows a region about a NACA0012 airfoil subdi-
vided into four domains. The domains have common edges.
The total number of edges is 12. The boundary grid point
distribution is prescribed at all 12 edges. Figure 8 shows a
complete O-type Euler grid. Grid orthogonality is prescribed
at the interior edges and at the boundary of the airfoil. A close-
up near the airfoil of the domains and grid is shown in Fig. 9
and Fig. 10.

Figure 11 shows a region about a RAE2822 airfoil, also
subdivided into four domains. Again, the boundary grid point
distribution is prescribed at all 12 edges and grid orthogonality
is prescribed at the interior edges and at the boundary of the
airfoil. Figure 12 shows a C-type Navier—Stokes grid. A closeup
of the grid near the airfoil is shown in Fig. 13.

Figure 14 shows an initial grid around a complex artificial
boundary with severe gnd folding. This initial grid is obtained
with an algebraic grid generation method. Figure 15 shows
the Navier—Stokes grid around the complex artificial boundary
obtatited with the elliptic grid generation method. Grid orthogo-
nality is prescribed. This grid illustrates the robustness of the
elliptic grid generation method. Figure 16 and Fig. 17 show
details of the elliptic grid at respectively a convex and a concave
part of the boundary. There is only some slight tendency that
grid lines are more closely (widely) spaced near convex (con-
cave) parts of the boundary.

3. SURFACE GRID GENERATION ON
MINIMAL SURFACES

Grid generation on a minimal surface is in fact a straightfor-
ward extension of grid generation in a domain in 2D physical
space. Consider four connected curved edges situated in 3D
physical space. A minimal surface is then defined as a surface
bounded by these four edges and with zero mean curvature.
Thus the shape of the minimal surface is a soap film bounded
by the four curved edges. Again, a parameter system with
two parameters is defined. The two parameters are normalized
arclength at the four curved edges. Furthermore, it is required
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that both parameters obey the Laplace—Beitrami equation for
surfaces. These two equations, together with the requirement
that the mean curvature is identically zero, define a differenti-
able one-to-one mapping from parameter space (a unit square)
onto the minimal surface. Thus this mapping is independent of
the prescribed boundary grid point distribution at the four edges.
The same algebraic transformation as used for domains in 2D
physical space is applied to map the computational space (a
unit square} onto the parameter space.

We will now show that the set of nonlinear elliptic partial
differential equations which the composite mapping has to ful-
fill is the same Poisson system as defined by Eq. (24) but with
x = (x, y. z)! instead of x = (x, ¥)". Thus grid generation on
a minimal surface in 3D physical space is in fact equivalent to
grid generation in a domain in 2D physical space. The result
that a Poisson system of the form as defined by Eq. (24) can
be used to compute a grid on a minimal surface can also be
found as a special application of the formulas derived in [3).

As in the two-dimensional case, consider again four curved
edges E;, E,, E5, Ey, but now situated in the three-dimensional
physical space with Cartesian coordinates x = (x, v, z)". Let
(E,, E;) and (F;, E;) be the two pairs of opposite edges as
shown in Fig. 2.

Introduce the parameter space % as the unit square in a two-
dimensional space with Cartesian coordinates s = (5, 1)T. Again
require that the parameters s and ¢ obey:

* s=(Qatedge E, and s = | at edge E,,
* s is the normalized arclength along edges E, and E,.
s t=0atedge E; and t = | at edge E,,
* ris the normalized arclength along edges E, and F;.

Furthermore, require that

where A is the Laplace—Beltrami operator for surfaces and H
is the mean curvature.

These three requirements, together with the described bound-
ary conditions define a unique mapping x : % — %3, The shape
of the surface defined by this mapping is a minimal surface
because of the requirement that the mean curvature H is zero.
The parametrization of the surface is defined by Egs. (51)
and (52).

Define the minimal surface & as

¥ = {x(s, 1) | (5, ) € D). (54)

Consider a prescribed boundary grid point distribution at the
four edges E,, £;, E;, E, of the minimal surface . Mathemati-
cally, the boundary grid point distribution can be defined as a
mapping x: 36 — 3%, where € is the computational space
defined as the unit square in a two-dimensional space with
Cartesian coordinates £ = (£ n)". Because x:9% — 8% is
prescribed and x: % — 3% is defined as described above, it
follows that s: 96 +— 9% is also defined.

In exactly the same way as for the two-dimensional case,
the mapping s: € +— P is defined by the algebraic straight-line
transformation defined by Egs. (5) and (6). The mapping x:
P — ¥ is defined by Eqgs. (51)-(53). The composite mapping
x:€ —» ¥ is defined as x = x(s(£)) and describes the interior
grid point distribution on the minimal surface &. Note that this
compostte mapping will be differentiable and one-to-one.

What remains to be done is to derive the system of nonlinear
elliptic partial differential equations which the composite map-
ping has to obey. Then the solution of this system defines the
mterior grid point distribution on the minimal surface ¥,

For this purpose, introduce the two covariant base vectors

a =x;, @ =X, (35)

The two covariant base vectors span the tangent plane of & at

As =14, (51} the corresponding point P. Define the unit surface normal as
Ar=0, (52) a, Aa,
_ n ==, (56)
H=0, (53) Jlay A\ ayf
n t
1 @ i @
@ @ > (D ®
——
0 @ — 0 @
) 1 £ 0 108 X

Computational space C

Parameter space P

Minimal surface S

FIG. 2. Transformation from computational (£ %) space to a minimal surface & in Cartesian (x, y, ) space.
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where /\ 1s the vector product operator. The contravariant base
vectors a' and a* are defined according to the rules
(a',a) = &,

i=1{1,2},j=1{1,2}, (57)

and

(@.n) =0, (a%, n) =0 (58)

Thus the two contravariant base vectors are also lying in the
tangent plane of & at the corresponding point P. Define the
covariant metric tensor components by Eq. (8) and the contra-
variant metric tensor components by Eq. (10). Then Eqgs. (11}
and (12) are still valid. Again introduce the determinant J* of
the covariant metric tensor: J* = gy ax» — a%.

Now consider an arbitrary function ¢ = ¢(& 7). Then ¢ is
also defined on surface & and the Laplace—Beltrami operator
of ¢ is expressed as

Ap= %{(Ja“(pf +Ja%.), + (Ja e+ Ja b)) (59)

(see [20, p. 227]). As in the two-dimensional case, substitution
of ¢ = £and ¢ = 7 into this equation yields Eq. (14). Thus
the Laplace—Beltrami operator of ¢ can also be expressed as
defined by Eq. (15). Substitution of respectively ¢ = s and ¢
= rin Eq. (15) and using the requirements expressed by Egs.
(51) and {52) yields exactly the same expressions for A£ and
Ar given in Eqgs. (18) and (19). Finally, substitution of ¢ =
x in Eq. (15) yields Eq. (21).

The Laplace—Beltrami operator applied on x obeys a famous
relation expressed by

Ax = 2Hn, (60)
where the mean curvature H is defined as
1
H= 5 (allX§E + Zaqu,, + azzx,m, Il) (61)

(forexample, see [21, Theorem 1, p. 71]). Using the requirement
H = 0 yields
Ax = 0. (62)
Thus Eq. (18) and Eq. (21) with Ax = 0 are also valid for
minimal surfaces. Following the same derivation as given at
the end of Section 2.1, we arrive at exactly the same nonlinear
system of elliptic partial differential equations as expressed by
Eq. (24). Thus an interior grid point distribution on a minimal
surface is found by solving Eq. (24). The only difference com-

pared to the two-dimensional case is that now x = (x, y, z)7
instead of x = (x, ¥)".

The same discretization and solution method as described in
Section 2.2 can be used to solve the Poisson grid generation
system in order to generate grids on minimal surfaces. The
only difference compared to the two-dimensional case is that
three (instead of two) linear systems must be solved during
one Picard iteration.

Grid orthogonality at boundaries can be obtained in the same
way as described in Section 2.3,

One may ask whether it is useful to implement a method to
compute grids on minimal surfaces in a 3D multi-block grid
generator code. The answer is yes. Minimal surfaces may be
used to define the geometry and grid for a block-face of which
only the four face-edges are given. It is also possible to apply
minimal surface grid generation when a grid must be generated
in a block-face with four face-edges lying in a plane. Then the
minimal surface is a plane surface bounded by the four edges.
The grids in the 2D domains depicted in Figs. 7-17 were
generated in this way and are in fact grids on minimal surfaces.

An example of a grid on a characteristic minimal surface is
shown in Fig. 19. This is a so-called square Scherck surface
[21]. The initial algebraic grid is shown in Fig. 18. Figure 20
illustrates what happens when the prescribed boundary grid
point distribution is changed. This figure clearly shows that the
shape of the minimal surface is independent of the prescribed
boundary grid point distribution. (See Section 5.3 for Figs.
18-20)

4. SURFACE GRID GENERATION ON
PARAMETRIZED SURFACES

4.1. Derivation of the Grid Generation Equations

In this section we develop a method to generate a grid on a
parametrized surface which is independent of the parametriza-
tion. A generated grid only depends on the shape of the surface
and the prescribed boundary grid point distribution at the four
edges of the surface.

Consider a bounded surface & with a prescribed geometrical
shape in three dimensional physical space with Cartesian coor-
dinates x = (x, ¥, z)". Assume that & is parametrized by a
differentiable one-to-one mapping

x: P, = P, (63)

where &, is the unit square in two-dimensional space with
Cartesian coordinates u = (u, v)". Define the four edges E,,
Ez, E'_:,, E4 of surface EP by

« u={atedge E, and u = 1 at edge E,,
* v=0atedge E;and v = 1 at edge E;.

Thus (E\, E;) and (E;, E.) are the two pairs of opposite edges
of surface & as shown in Fig. 3. Introduce the parameter space
%P, as the unit square in a two-dimensional space with Cartesian
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FIG. 3. Transformaticn from computational (& %) space to a parametrized surface & in Cantesian (x, v, z) space.

coordinates s = (s, )T. Again require that the parameters s and
t obey:

* s=0atedge E, and s = | at edge E;,
* s is the normalized arclength along edges E; and E,
* t=0atedge E; and t = 1 at edge E,,
* ¢ is the normalized arclength along edges £, and E;.

Furthermore, require that As = 0 and Ar = 0, where A is the
Laplace-RBeltrami operator for surfaces. Hence the parameters
s and ¢ obey

(Ja"s, + Ja"s,), + (Ja'%s, + Ja®s,), = 0, {64)

(Jallt, + Ja%t), + (Ja's, + Ja®t,), = 0, (65)
where g are the contravariant tensor components and J° is
defined as the determinant of the covariant metric tensor. The
contravariant tensor components a¥ are related to the covariant
tensor components a; according to Eq. (11). The covariant
metric tensor components are defined by Eq. (8), where the
two covariant base vectors are now given by

a =x, &-=xX%,. (66)
Thus the coefficients Ja'!, Ja'?, and Ja* in Egs. (64) and (65)
are functions of # and v and Egs. (64) and (65) are therefore
two uncoupied second-order linear partial differential equations
for the functions s = s(u, v) and r = t{x, v).

Each boundary point of surface & has a unique (s, 1) parame-
ter value at 4%, and a unique (&, v) parameter value at 9%,,.
Thus each (4, v) parameter value at 3%, has also a unique
{5, ty parameter value at 9%,,. Thus the functions s and ¢ are
prescribed at the boundary of ,,. Hence, Eq. (64), together
with the Dirichlet boundary conditions for s, can be used to
compute s = s(u, v} and Eq. (63}, together with the Dirichlet
boundary conditions for #, can be used to compute ¢ = (i, v).
Only two linear partial differential equations have to be solved
to define these mappings. These two mappings are compactly
writtenass: %, +—» P,. Note thats : P, — P, is a differentiable

one-to-one mapping so that the inverse mapping u: &, 1+ @,
also exists.

Thus the composite mapping X: P, — ¥, defined as x =
x(u(s)), also exists and s differentiable and one-to-one. Note
that this mapping x: P, — ¥ only depends on the shape of
surface ¥ and is independent of the original parametrization
x: P, — & The mapping x: P, — ¥ may thus be considered
as a property of surface & and defines a new unique parametriza-
tion of . '

Consider a prescribed boundary grid point distribution at the
four edges E), E,. E;, E,. Mathematically, the boundary grid
point distribution can be defined as a mapping x:9%€ r»> 4,
where %€ is the computational space defined as the unit square
in a two-dimensional space with Cartesian coordinates & =
(& M". Because x: 36 +— 9 is prescribed and x: 8P, +— 3%
is defined as described above, it follows that s: 996 — %, is
also defined.

In exactly the same way as for the two-dimensional case,
the mapping s : €+ P, is now defined by the algebraic straight-
line transformation defined by Eqgs. (5) and (6). The composition
of the mapping s : ‘€ —> %, and the mapping x: %, — ¥ defines
X:% +— & and describes the interior grid point distribution
on surface &, Note that this composite mapping will also be
differentiable and one-to-cne.

Although it is possible 1o derive the system of nonlinear
elliptic partial differential equations which the composite map-
ping x: € > ¥ has to obey, we prefer not to do so because it
is much easier to solve the linear partial differential equations
defined by Eqs. (64) and (65) to define the mapping s: P, +—
%, instead of interchanging the dependent and independent
variables to obtain the nonlinear partial differential equations
for the inverse mapping u: %, — P,,. Thus the mapping s:
P — P, is computed by solving Egs. (64) and (65) and an
inversion problem is solved afterwards to compute the inverse
mapping u: %, — P,,.

This is possible due to the fact that the parametrization x:
P, — & is one-to-one so that an initial grid folding free grid
in surface  can be easily generated. Such an initial grid is
obtained by applying the algebraic straight-line algorithm in
parameter space 9,,. This is a different situation compared to
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grid generation in 2D domains or minimal surfaces where it is
not possible to generate easily an initial grid folding free grid.
Details of the solution method are described in the next section.

4.2. Discretization and Solution Method

Consider surface & with a prescribed boundary grid point
distribution. Assume that there are M -+ 1 prescribed boundary
grid points on edges £, and E,, and ¥ + 1 prescribed boundary
grid points on edges E; and E,. A boundary conforming grid
in the interior of surface & is now obtained by the following al-
gorithm.

Step 1. Compute the corresponding boundary grid points in
parameter space P,,. A boundary grid point x, of surface ¥ is
related to a unique boundary grid point ug of parameter space
@, by the equation x(ug} = xz, where x: ,, — & is the given
parametrization of surface . In practice, the corresponding
parameter values uy of a boundary grid point x, are often
already known.

Step 2. Compute an initial grid u}; by applying the algebraic
straight-line algorithm in parameter space ®,,. Thus u; is com-
puted according to Eqs. (36) and (37) with s;; and #; replaced
by uf; and v}, Compute the corresponding initial grid x{; on
surface & by x}; = x(u}p).

Step 3. Compute the normalized arclength parameters s and
¢ at the boundary points of surface ¥ in a way as described in
Section 2.2. Solve the two Laplace~Beltrami equations As =
0, At = 0, together with Dirichlet boundary conditions, on the
initial grid x}. The same solution procedure as described at the
end of Section 2.3 can be used to discretize and solve the
Laplace—Beltrami equations. Note that the Laplace—Beltrami
equation As = ( is in fact the same equation as defined by Eq.
(47); the only difference compared to the two-dimensional case
is that now x = (x, v, z)7, instead of x = (x, y)'. Thus in
practice, the Laplace—Beltrami equations As = 0 and Ar = 0
are solved directly in computational space, instead of solving
Eqs. (64) and (65) on the nonuniform grid uj; in parameter
space P,,, which would be more complicated. Write the solu-
tion of the Laplace—Belirami equations as {s; = (s}, t})|i =
0..N,j=0.. M.

Step 4. Compute in parameter space P, the grid {s; =
(550 8) | i = 0 .. N; j = O ... M} by applying the algebraic
straight line algorithm according to Eqgs. (36) and (37).

Step 5. Finally the inversion problem must be solved. Con-
sider the parameter space &, and consider that Step 3 computed
mesh (s);, £) as an embedded nonuniform grid. This grid may
also be considered as a nonoverlapping subdivision of parame-
ter space P, by N X M patches, where each patch has four
corner points.

For a given interior grid point (i, j), the new position x;; on
surface & of the final grid is now obtained as follows. Locate
the patch in parameter space %, to which that Step 4 computed

value (s, t;) belongs. Suppose that (s;;, ¢;) belongs to patch
(p. q) as shown in Fig. 4.

The local patch parameters e and 8 are now defined by the
two bilinear equations,

5= 5p,(1 —a)l — B) + 550 ,0(1 — B)
+ S;.q+l(1 -+ S{:+1.q+1ar8,
L= t;,q(l -yl -3+ t}'ﬂl‘qa(l -8

+ f;_qﬂ(l —a)B+ t:)+l,q+laﬁ‘

The two parameters « and 3 are solved by Newton iteration.
Note that 0 =< o = | and 0 = § = | because (s;;, ;) belongs
to patch (p, ¢g). Compute the corresponding position u; =
{u;, v;) in parameter space %, by

u;; = ”,{:.q(l —a)l - B) + u,fJJrl,qa(l - 3)
+ “{quﬂ(l ~o) B+ u;+l,q+la|6:
Uiy = Uyl =l = B) + vfha(l — )

+ U;l,q-i-l(] —a)B+ U::+1,q+1a)8,

and compute X; = x(u;), where x: %, +— ¥ is the given
parametrization. The grid {x; | i = 0 .. N; j = 0 ... M} is the
final surface grid.

The same algorithm can also be used to obtain an orthogonal
grid at the boundary of surface &. The only changes that have
to be made are at Step 3 and Step 4. At Step 3, the Laplace—
Beltrami equations must then be solved, together with the Neu-
mann boundary condition ds/dn = O along edges E, and E,,
and d4/9n = 0 along edges E, and E,, where n is the cutward
normal direction. At Step 4, the grid s;; must be computed using
Egs. (44) and (45) instead of Eqs. (5) and (6).

4.3, Hiustrations

We only consider parametrized surfaces which are defined
as interpolated surfaces, constructed from a two-dimensional
array of control points and passing through these control points.
The surface shape of each patch, spanned between four adjacent
control points, is defined by a bicubic polynomial. Hermite
interpolation is used to connect the surface shapes of the patches
smoothly. For details, see [12]. The parametrization of a surface,
defined by the mapping x : &, — &, is constructed such that this
mapping is continuously differentiable. The parametrization
depends on the position of the control points.

As an illustration, consider a surface ¥ which is defined by
an irregular control point mesh in a umit square as shown in
Fig. 21. Thus the shape of surface & is a unit square. Figure
22 shows how a uniform grid in @,, is mapped onto surface
Y by the parametrization x: %, — &. This figure clearly dem-
onstrates that the parametrization of & depends on the position
of the control points.
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FIG. 5. Transformation from computational (£ =, ¢) space to a domain @ in Cartesian {x, y, 7) space.

onte a parameter space P. The parameter space P is also a
unit cube. The elliptic transformation is a differentiable one-
to-one mapping from parameter space P to domain 9.

Introduce the parameter space % as the unit cube in three-
dimensional space with Cartesian coordinates s = (s, , u)"
Require that the parameters s, ¢, and # obey

s s=0atface F, and s = 1 at face F,,

e t=0atface Fyand r = 1 at face F,,

= u=0atface Fsand v = 1 at face F;,

* s is the normalized arclength at edges E,, E,, E;, E,,
* s the normalized arclength at edges Es, Eg, E;, Ex,

* u is the normalized arclength at edges E,, Ep, £11, Eiz.
From the first three requirements it follows that

e 5(0,m{=0and s(l, n, &) =1,
* H&EG O =0ande(E 1,0 =1,
* W =0and u(g n 1)=1.

The coordinates ( s, ¢, u) are defined at all 12 edges of domain
9. The computational coordinates are defined at the complete
boundary of % and thus also at the 12 edges. Thus each point
at the 12 edges of domain 9 has a unique (£, 1, {) coordinate
and a unique (s, §, 1) coordinate. Thus each (£, 0, {) value at
the 12 edges of the unit cube in computational space has also
a unique (s, ¢ u) value. Hence, we may conclude:

* S(& 05 0) = SEl(é:)s S(ga 11 0) = SEz(g)! 5(5, 01 1) =
s5,(£), 5(& 1, 1) = s,(£),

* t(ov 7?1 0) = 'tEj(n)9 t(]w 7?= O) = tﬁs(n)a I(O, nv 1) =
e (), 11, 7 1) = 15,(),

* M(()’ 09 {) = ueg(f), u(l, O, §) = uEm(Qe M(O, 1’ év) =
uE“({)a u(l.’ 1’ Q = uEu(g)-

The twelve edge functions s By aeer s g, ATE monotonically increas-
ing and are defined by the prescribed boundary point distribu-
tion at the 12 edges.

The algebraic mapping from computational space to parame-
ter space, §:%€ — P, is now defined as

5 =5z, (61 — )1 — u) + 56 (H1(1 — u)

+ 5g,(EN1 — Du + s, (O 1u, (67)
(=t ()1 =)L —w) Hig (sl —u)

+ te ()1 — s}hu + g, (n)su, (68)
w=ug (01— )1 = 1) + g (Ds (1 = 1)

+ug (O] — 5)t + ug, () st (69)

Note that this mapping only depends on the boundary grid point
distribution at the 12 edges of domain D.

Equation {67) implies that a grid plane £ = const is mapped
to the parameter space % as a bilinear surface; s is a bilinear
function of ¢ and . Similarly, Eq. (68) and Eq. (69) imply that
grid planes 1 = const and { = const are also mapped to the
parameter space P as bilinear surfaces. For a given computa-
tional coordinate (£, #, {) the corresponding (s, ¢ u) value is
found as the intersection point of three bilinear surfaces. For
this reason, the system defined by Eqs. (67)—(69) is called
the *‘algebraic bilinear transformation’” because of the use of
bilinear surfaces in parameter space %. The algebraic bilinear
transformation is the three-dimensional equivalent of the two-
dimensional algebraic straight-line tranformation. It can be eas-
ily verified that two bilinear surfaces corresponding to two
different &-values will never intersect in parameter space P.
The same is true for two different  or ¢ values. This observation
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indicates that the algebraic transformation is a differentiable
one-to-one mapping. The system defined by Eqs. (67)-(69) can
also be interpreted as a transfinite interpolation with nonlinear
blending functions.

Because x: 9% — 3% is prescribed and s: € +— % is defined
by the algebraic bilinear transformation, it follows that the
(s, t, u) coordinates are now defined at the complete boundary
of domain %, including the interior of the six faces F\.... , Fy.
Require that (s, 1, ¥) are harmonic functions in the interior of
D, ie.,

As=s,+s,+s5, =0,
A=

Au= g+, +u, =0,

te+ 1, F1,=0, (70)

Thus a linear elliptic boundary value problem defines the map-
ping s:% — %, It is still an open theoretical question if this
mapping is one-to-one [5)]. A reviewer remarked that the proof
in [4] is false. In this paper it is assumed that s : D +— P is
one-to-one and thus that the inverse mapping x: % — % exists.
This inverse mapping obeys a nonlinear system of elliptic partial
differential equations.

Note that the mapping x:% — 9 is not independent of the
boundary grid point distribution and may thus not be considered
as a property of domain 9. This is because the (s, ¢, «) coordi-
nates at the interior of the six boundary faces depend on the
boundary grid point distribution. It is possible to define the
mapping Xx: % +— @ independently from the boundary grid
point distribution by requiring that the (s, f, %) coordinates
obey the Laplace—Beltrami equations in the interior of the six
faces of domain & but then it is no longer possible to use
the simple algebraic bilinear transformation defined by Egs.
(67)-(69).

The algebraic transformations s:%€ +» % and the elliptic
transformation x: % > % are assumed to be one-to-one map-
pings. Then the composite mapping x:% — @, defined as
x = x(s(£)), is differentiable and one-to-one. Furthermore, due
to the properties of the basic mappings, we may indeed expect
that the interior grid point distribution will be a good refiection
of the boundary point distribution.

The composite mapping x: %6 — 2 obeys an elliptic Poisson
system with control functions defined by the algebraic mapping
§:%€ — . This three-dimensional elliptic Poisson system,
together with the appropriate expressions of the control func-
tions is a straightforward extension of the two-dimensional
system and will be derived in the remainder of this section.

Define the three covariant base vectors

a = X, M =X, & =X, (71)
and the covariant metric tensor components
a; = (a, a), i={1,2,3}j=1{12 3} (72)

The three contravariant base vectors a', a%, and a* are defined
according to the rules

(a,a) =48, i={1,2,3}L;=1{1,2,3} (73
The contravariant metric tensor components
a’ =(a,a), i=11,273};i=1{1273} (74
fulfill
an dp ap gt b 1 00
dpp Apn dn a’> 4% ¢¥|=10 1 0 (75)
@y an ;) \a? o a® a? 0 0 1

The three contravariant base vectors can be expressed as

a' = g"a, + a'?a, + a"a,,
a! = g'%a, + a®a, + a%a,, (76)
a’ = g%, + a®a, + a¥a,.

Define /2 as the determinant of the covariant metric tensor.
Consider an arbitrary function ¢ = (& n. {). Then ¢

is also defined in domain % and the Laplacian of ¢ can be
expressed as

A= %{(Ja”@ + Jal e, + Ja ),

+ (Jau(,t'g + Jazqu,, + jazB(ﬁ;)n
+ (JaB g + JaB b, + JaP )}

a7

As in the two-dimensional case, substitution of ¢ = £ ¢ =
7, and ¢ = { into this equation yields expressions for A, A,
and A¢. Combining these expressions with Eq. (77) gives

Ad) = all¢§§ + 2alz¢§,? + 2ﬂ13¢§; + auqb,m + 2023 ¢'Tf§

(78)
tatdy+ Al +And, + Al P,

Substitute ¢ = (s, 1, w)" in Eq. (78) and use the requirement
that s, ¢, and u are harmonic in domain 9, ie., As = 0, Ar =
0, and Au = 0. Then the following expressions for the Laplacian
of £ m, and { are

A¢
Aq
Ag

= a“P” + 2a]2P|2 + 2a”P13
{79)

+ aHPH + 2023P23 + GHPB,
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where
3 Sen Sg
Piu=-T"tul Po=-T""taf Ps=-T"{1tg|
g Uen By
Sun Snt S
Ppo=-T"'"\ty| Pu=-T"ty| Puy=-T7" 1\,
Uy Uy Uy
(80)
and the matrix T is defined as
Sf .S',;, S!:
T=\& & | (81)
l!g’ IJ',J u;

The 18 coefficients of the six vectors Py, Pi, P, Po, Pos,
P;; are so-called control functions. Thus the 18 control functions
are completely defined and easily computed for a given alge-
braic transformation mapping s = s( £). Different and less useful
expressions of these control functions can also be foundin [1, 2].

Finally, substitution of ¢ = x in Eq. (78) and using the fact
that Ax = ), we arrive at

axg + 2a'2x,, + 2aYxg + aBx,, + 2aPx,;
(82)
+aPx, + AEx, + Anx, + Alx, = 0.

The final form of the Poisson grid generation system can now
be derived from this equation by substitution of Eg. (79} and
by multiplication with J? and expressing the contravariant tensor
components in the covariant tensor components according to
Eq. (75). The result can be written as

a''xy + 2ax,, + 2aPxg + aPx, + 208x, + oFPxy
T (@' Pl + 2¢2P), + 2aPPl3 + o Pl + 207 PY + Pl X,
+ (@ P + 20/2PL + 20°Ph + a2Ph + 208 PY, + o Ph)x,

+ (@'P} + 2P + 2a9PY + of2Ph + 200Ph + o P,

=0, (&3
with
a“ = dypdyy — a%a, alZ = 4nan - 2833,
a = apay — apan, o = ayan — ah, (84)
a® = apa, — apay, o = ayan — ah,

and

any = (Xg, X, an = (X xn)s 3 = (X, X7,

(85)
an = Xy, Xply  an = (X, X7}, an = (X, X;)
Equation (83), together with the expressions for the control
functions P given by Eq. (80), forms our 3D grid generation
system. Grids are computed by solving this quasi-linear system
of elliptic partial differentiai equations. The discretization of

this Poisson system is described in the next section.

5.2. Discretization and Solution Method

Consider a rectangular grid of (N + 1) X (M + 1) X
(L + 1) points in computational space ‘€ defined as

Ep=&=ilIN, mu=1n=jIM,
i=0..N;j=0..M;k=0..L

ff.,.;k =, =k/L,
(86)

Assume that x; ;, i prescribed on the boundary of this grid
and consider the computation of x,;, in the interior of the
computational grid based on the solution of the Poisson system
defined by Eq. (83).

The first task is the computation of the algebraic transforma-
tion. The computation of the arclength normalized values at
the 12 edges is straightforward and performed in exactly the
same way as described in Section 2.2, The arclength normalized
variables (s, #ix, ;) in the interior of the six boundary
faces and in the interior of the grid are computed according to
the algebraic bilinear transformation defined by Eqgs. (67)-(69)
and are thus found by solving simultaneously the three bilinear
algebraic equations:

S = 8ol — 1,0 — w0 + Spmoti 1 — 0550

(87)
+ 800l — B i Sipali it o
e = tojoll = si0(0 — s 50 + tyjo8i el — w50) (88)
 to (] = St et by oSt e
Hije = tooe{l — Sf._i.k)(l - ff.j,ﬁ) Fouygu sl — 450
(89)

+ ugpa (] — Sibin T BaaeSigetige-

for each pair (¢, j, &) € (0 .. N; 0 ... M; 0 ., L).

At each grid point (i, j, k), the 18 control functions defined
by Eq. (80), are now easily computed using central difference
representations of the derivatives of s, ¢, and u.

What remains is the iterative solution process of the nonlinear
elliptic Poisson grid generation system defined by Eq. (83).
The discretization and the applied Picard iteration process is
similar as used to solve the 2D Poisson grid generation systems
and the details are therefore omitted.
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FIG. 6. Structure of 19-point stencil of the discretized 3D Poisson grid
gengration system,

During a Picard iteration, a linear system of equations must
be solved for the unknowns x;;4, { = 0 .. N;j=0. . M; k=
0 ... L. This linear system consists of 19-point stencils with
Dirichlet boundary conditions. Figure 6 shows the structure of
the 19-point stencils. Such linear systems are solved by another
excellent black-box linear-system solver, also developed at
C.W.1 by P. M. de Zeeuw. The black-box linear-system solver,
called THREED, is based on multigrid and Bi-CGSTAB [17,

_

FIG. 7. Region about NACA(0012 airfoil subdivided into four domains.

FIG. 8. Complete O-type Euler grid.

18]. The linear system solver THREED is called three fimes
to compute the three components x, ;;, ;4. and z; ;; of X, ;.
The complete process is repeated until a sufficiently accurate
solution has been obtained. The initial start solution x° is ob-
tained by algebraic grid generation. The final grid is indepen-

T T

-

FIG. 9. Domain boundaries near NACAO012 airfoil.







56 S. P. SPEKRENSE

hd x
—“—1‘1:
1

FIG. 14. Initial algebraic grid with severe grid folding around a complex FIG. 16. Detail of elliptic grid at convex part of the boundary.
artificial boundary.

64 X 48, On the wing, the mesh-width in normal direction of  grid-planes intersecting the wing. Figure 31 is a closeup of the

the first grid cell is at the leading edge 1073 times the local wing-tip. Figure 32 is a two-dimensional projection of hori-

chord-length and at the trailing edge 2 X 107° times the local zontal grid-planes intersecting the wing. Figure 33 and Fig.

chord-length. 34 are two-dimensional projections of vertical grid-planes at
Figure 29 and Fig. 30 are three-dimensional views of vertical  stations haifway in spanwise and chordwise direction.
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FIG. 15. Elliptic grid with orthogonality at the boundary, FIG. 17. Detail of elliptic grid at concave part of the boundary.
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The grid is grid-folding free and the interior grid point distri-
bution is a good reflection of the prescribed boundary grid point
distribution at the block-faces.

6. CONCLUSIONS

An elliptic grid generation method is developed which pro-
duce excellent grids in the sense of smoothness, grid point
distribution, and regularity. The elliptic grid generation method
is based on the composition of an algebraic and elliptic transfor-
mation. The elliptic transformation is based on the Laplace
equations for domains and on the Laplace-Beltrami equations
for surfaces. The composite mappings obey the familiar grid
generation systems of Poisson equations with control functions
specified by the algebraic transformation. New expressions for
the control functions are derived which only depend on the
algebraic transformation and not also on the inverse of this
transformation. The composite mappings are differentiable and

one-to-one for 2D domains and surfaces and probably also for
3D domains.

FIG. 18.

Initial algebraic grid used for minimal surface grid generation.
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FIG. 19. Minimal surface grid. Surface is a square Scherck surface.

It is described how the proposed elliptic grid generation
method can be used to generate boundary conforming grids in
2D domains, 3D domains, and surfaces. It is shown that surface
grid generation on minimal surfaces (soap films) is in fact a
straightforward extension of grid generation in 21D domains. It
is also shown that grid generation on parametrized surfaces
with a prescribed geometrical shape can be performed very
easily by only solving two linear elliptic partial differential
equations and an inversion problem. A generated surface grid
on a parametrized surface is independent of the parametrization
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FIG. 20. Minimal surface grid. Shape of surface is independent of the
boundary grid point distribution.



58 S. P. SPEKREIISE

: [ L[]
HEA!
1]
THRREEN
[ERERERN
PIAAAEN N
PAVAVNASN NS
v YT

FIG. 21. Surface defined by an irregular contro} point mesh in a unit in- FIG. 23, New grid in parameter space P,
terval.

itself and only depends on the shape of the surface and the The described elliptic grid generation method has been imple-
prescribed boundary grid point distribution. mented into NLR’s multi-block grid generation code ENGRID

For 2D domains and surfaces, it is described how the alge-  and is extensively used for the generation of boundary conform-
braic transformation can be redefined to obtain grids which are  ing Navier—Stokes grids in blocks and block-faces with com-

crthogonal at the boundary. plex shapes.
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FIG. 22, Initial algebraic surface grid obtained from a uniform grid in FIG.24. Cormresponding elliptic surface grid. Grid is independent of param-

parameter space P,,. etrization.
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FIG. 29. Vertical grid-plane intersecting the Onera-M6 wing.

FIG. 31. Wing-tip with parts of vertical grid-planes.

FIG. 30. Onera-M6 wing with parts of vertical grid-planes.

FIG. 32. Horizontal grid-planes intersecting the wing.
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FIG. 33. Grid halfway in spanwise direction.

FIG. 34. Grid halfway in chordwise direction.
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